1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//!
//! Definition of keyed (aka "dynamic family of") histograms.
//!
//! Keyed histograms represent measures on a set of entities known
//! only at runtime, e.g. plug-ins, user scripts, etc. They are also
//! slower, more memory-consuming and less type-safe than Plain
//! histograms, so you should prefer the latter whenever possible.
//!

use rustc_serialize::json::Json;

use std::collections::{BTreeMap, HashMap, HashSet};
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::marker::PhantomData;
use std::mem::size_of;

use misc::{Flatten, LinearBuckets, SerializationFormat, vec_resize, vec_with_size};
use task::{BackEnd, Op, KeyedRawStorage};
use service::{Service, PrivateAccess};
use indexing::*;

///
/// A family of histograms, indexed by some dynamic value. Use these
/// to monitor families of values that cannot be determined at
/// compile-time, e.g. add-ons, programs, etc.
///
/// Histograms do not implement `Sync`, so an instance of
/// `KeyedHistogram` cannot be shared by several threads. However, any
/// histogram can be cloned as needed for concurrent use.
///
/// # Performance
////
/// Cloning a histogram is relatively cheap, both in terms of memory
/// and in terms of speed (most histograms weigh ~40bytes on a x86-64
/// architecture).
///
/// When the telemetry service is inactive, recording data to a
/// histogram is very fast (essentially a dereference and an atomic
/// fetch). When the telemetry service is active, the duration of
/// recording data is comparable to the duration of sending a simple
/// message to a `Sender`.
///
pub trait KeyedHistogram<K, T> : Clone {
    ///
    /// Record a value in this histogram.
    ///
    /// If the service is currently inactive, this is a noop.
    ///
    fn record(&self, key: K, value: T) {
        self.record_cb(|| Some((key, value)))
    }

    ///
    /// Record a value in this histogram, as provided by a callback.
    ///
    /// If the service is currently inactive, this is a noop.
    ///
    /// If the callback returns `None`, no value is recorded.
    ///
    fn record_cb<F>(&self, _: F) where F: FnOnce() -> Option<(K, T)>;
}

/// Back-end features specific to keyed histograms.
impl<K> BackEnd<Keyed<K>> where K: ToString {
    /// Instruct the Telemetry Task to record a value in an
    /// already registered histogram.
    fn raw_record(&self, k: &Key<Keyed<K>>, key: String, value: u32) {
        self.sender.send(Op::RecordKeyed(k.index, key, value)).unwrap();
    }

    /// Instruct the Telemetry Task to record the result of a callback
    /// in an already registered histogram.
    fn raw_record_cb<F, T>(&self, cb: F) -> bool where F: FnOnce() -> Option<(K, T)>, T: Flatten {
        if let Some(k) = self.get_key() {
            if let Some((key, v)) = cb() {
                self.raw_record(&k, key.to_string(), v.as_u32());
                true
            } else {
                false
            }
        } else {
            false
        }
    }
}

///
/// A histogram that ignores any input.
///
/// Useful for histograms that can be activated/deactivated either at
/// compile-time (e.g. because they are attached to specific versions
/// of the application) or during startup (e.g. depending on
/// command-line options).
///
pub struct KeyedIgnoring<T, U> {
    witness: PhantomData<(T, U)>,
}

impl<T, U> KeyedIgnoring<T, U> {
    //
    // Create an histogram that ignores any input.
    //
    // `KeyedIgnoring` histograms are effectively implemented as empty
    // structs, without a back-end, so they take no memory.
    //
    pub fn new() -> KeyedIgnoring<T, U> {
        KeyedIgnoring {
            witness: PhantomData
        }
    }
}

impl<K, T> KeyedHistogram<K, T> for KeyedIgnoring<K, T> {
    fn record_cb<F>(&self, _: F) where F: FnOnce() -> Option<(K, T)>  {
        return;
    }
}

impl<T, U> Clone for KeyedIgnoring<T, U> {
    fn clone(&self) -> Self {
        KeyedIgnoring {
            witness: PhantomData
        }
    }

}

///
///
/// Flag histograms.
///
/// Each entry has only two states. Until the first call to
/// `record()`, it is _unset_. Once `record()` has been called once,
/// it is _set_ and won't change anymore. This type is useful if you
/// need to track whether a feature was ever used during a session.
///
///
/// With `SerializationFormat::SimpleJson`, these histograms are
/// serialized as an array of the keys with which it was called.
/// Keys are sorted by alphabetical order, and appear only once.
///
pub struct KeyedFlag<T> {
    back_end: BackEnd<Keyed<T>>
}


impl<K> KeyedFlag<K> where K: ToString {
    pub fn new(service: &Service, name: String) -> KeyedFlag<K> {
        let storage = Box::new(KeyedFlagStorage { encountered: HashSet::new() });
        let key = PrivateAccess::register_keyed(service, name, storage);
        KeyedFlag {
            back_end: BackEnd::new(service, key),
        }
    }
}

struct KeyedFlagStorage {
    encountered: HashSet<String>
}

impl KeyedRawStorage for KeyedFlagStorage {
    fn store(&mut self, k: String, _: u32) {
        self.encountered.insert(k);
    }
    fn to_json(&self, format: &SerializationFormat) -> Json {
        match format {
            &SerializationFormat::SimpleJson => {
                // Collect and sort the keys.
                let mut keys : Vec<&String> = self.encountered.iter().collect();
                keys.sort();
                let array = keys.iter().map(|&x| Json::String(x.clone())).collect();
                Json::Array(array)
            }
        }
    }
}

impl<K> KeyedHistogram<K, ()> for KeyedFlag<K> where K: ToString {
    fn record_cb<F>(&self, cb: F) where F: FnOnce() -> Option<(K, ())>  {
        self.back_end.raw_record_cb(cb);
    }
}

impl<T> Clone for KeyedFlag<T> {
    fn clone(&self) -> Self {
        KeyedFlag {
            back_end: self.back_end.clone()
        }
    }

}

///
/// Linear histograms.
///
///
/// Linear histograms classify numeric integer values into same-sized
/// buckets. This type is typically used for percentages, or to store a
/// relatively precise of the amount of resources (time, memory) used
/// by a section.
///
///
/// With `SerializationFormat::SimpleJson`, these histograms are
/// serialized as an object
/// ````js
/// {
///   key_1: array_1,
///   key_2: array_2,
///   ...
/// }
/// ````
///
/// where each `array_i` is an array of numbers, one per bucket, in
/// the numeric order of buckets
///
pub struct KeyedLinear<K, T> where T: Flatten {
    witness: PhantomData<T>,
    back_end: BackEnd<Keyed<K>>,
}


type KeyedLinearBuckets = LinearBuckets;

struct KeyedLinearStorage {
    values: HashMap<String, Vec<u32>>,
    shape: KeyedLinearBuckets,
}

impl KeyedLinearStorage {
    fn new(shape: KeyedLinearBuckets) -> KeyedLinearStorage {
        KeyedLinearStorage {
            values: HashMap::new(),
            shape: shape
        }
    }
}

impl KeyedRawStorage for KeyedLinearStorage {
    fn store(&mut self, key: String, value: u32) {
        let index = self.shape.get_bucket(value);
        match self.values.entry(key) {
            Occupied(mut e) => {
                e.get_mut()[index] += 1;
            }
            Vacant(e) => {
                let mut vec = vec_with_size(self.shape.buckets, 0);
                vec[index] += 1;
                e.insert(vec);
            }
        }
    }
    fn to_json(&self, _: &SerializationFormat) -> Json {
        // Sort keys, for easier testing/comparison.
        let mut values : Vec<_> = self.values.iter().collect();
        values.sort();
        // Turn everything into an object.
        let mut tree = BTreeMap::new();
        for value in values {
            let (name, vec) = value;
            let array = Json::Array(vec.iter().map(|&x| Json::I64(x as i64)).collect());
            tree.insert(name.clone(), array);
        }
        Json::Object(tree)
    }
}


impl<K, T> KeyedLinear<K, T> where K: ToString, T: Flatten {
    ///
    /// Create a new Linear histogram with a given name.
    ///
    /// Argument `name` is used as key when processing and exporting
    /// the data. Each `name` must be unique to the `Service`.
    ///
    /// `min` is the minimal value expected to be entered in this
    /// histogram. Any value lower than `min` is rounded up to `min`.
    ///
    /// `max` is the maximal value expected to be entered in this
    /// histogram. Any value higher than `max` is rounded up to `max`.
    ///
    /// `buckets` is the number of buckets in this histogram. For
    /// highest possible precision, use `buckets = max - min + 1`.
    /// In most cases, however, such precision is not needed, so you
    /// should use a lower number of buckets.
    ///
    ///
    /// # Performance
    ///
    /// Increasing the number of buckets increases the memory usage on
    /// the client by a few bytes per bucket per key. More
    /// importantly, it also increases the size of the payload, hence
    /// the total amount of data that the application will eventually
    /// upload to a central server. If your application has many
    /// clients and you wish to keep your server happy and your
    /// bandwidth costs manageable, don't use too many buckets.
    ///
    ///
    /// # Panics
    ///
    /// If `name` is already used by another histogram in `service`.
    ///
    /// If `min >= max`.
    ///
    /// If `buckets < max - min + 1`.
    ///
    pub fn new(service: &Service, name: String, min: u32, max: u32, buckets: usize) -> KeyedLinear<K, T> {
        assert!(size_of::<u32>() <= size_of::<usize>());
        assert!(min < max);
        assert!(max - min >= buckets as u32);
        let shape = KeyedLinearBuckets::new(min, max, buckets);
        let storage = Box::new(KeyedLinearStorage::new(shape));
        let key = PrivateAccess::register_keyed(service, name, storage);
        KeyedLinear {
            witness: PhantomData,
            back_end: BackEnd::new(service, key),
        }
    }
}

impl<K, T> KeyedHistogram<K, T> for KeyedLinear<K, T> where K: ToString, T: Flatten {
    fn record_cb<F>(&self, cb: F) where F: FnOnce() -> Option<(K, T)>  {
        self.back_end.raw_record_cb(cb);
    }
}

impl<K, T> Clone for KeyedLinear<K, T> where T: Flatten {
    fn clone(&self) -> Self {
        KeyedLinear {
            back_end: self.back_end.clone(),
            witness: PhantomData
        }
    }

}

///
///
/// Count histograms.
///
/// A Count histogram simply accumulates the numbers passed with `record()`.
///
///
/// With `SerializationFormat::SimpleJson`, these histograms are
/// serialized as an object, with keys sorted, in which each field is
/// a number.
///
pub struct KeyedCount<K> {
    back_end: BackEnd<Keyed<K>>,
}

// The storage, owned by the Telemetry Task.
struct KeyedCountStorage {
    values: HashMap<String, u32>,
}

impl KeyedRawStorage for KeyedCountStorage {
    fn store(&mut self, key: String, value: u32) {
        match self.values.entry(key) {
            Occupied(mut e) => {
                let v = e.get().clone();
                e.insert(v + value);
            }
            Vacant(e) => {
                e.insert(value);
            }
        }
    }
    fn to_json(&self, format: &SerializationFormat) -> Json {
        match format {
            &SerializationFormat::SimpleJson => {
                // Sort keys, for easier testing/comparison.
                let mut values : Vec<_> = self.values.iter().collect();
                values.sort();
                // Turn everything into an object.
                let mut tree = BTreeMap::new();
                for value in values {
                    let (name, val) = value;
                    tree.insert(name.clone(), Json::I64(val.clone() as i64));
                }
                Json::Object(tree)
            }
        }
    }
}

impl<K> KeyedHistogram<K, u32> for KeyedCount<K> where K: ToString {
    fn record_cb<F>(&self, cb: F) where F: FnOnce() -> Option<(K, u32)>  {
        self.back_end.raw_record_cb(cb);
    }
}


impl<K> KeyedCount<K> {
    ///
    /// Create a new KeyedCount histogram with a given name.
    ///
    /// Argument `name` is used as key when processing and exporting
    /// the data. Each `name` must be unique to the `Service`.
    ///
    /// # Panics
    ///
    /// If `name` is already used by another histogram in `service`.
    ///
    pub fn new(service: &Service, name: String) -> KeyedCount<K> {
        let storage = Box::new(KeyedCountStorage { values: HashMap::new() });
        let key = PrivateAccess::register_keyed(service, name, storage);
        KeyedCount {
            back_end: BackEnd::new(service, key),
        }
    }
}

impl<K> Clone for KeyedCount<K> {
    fn clone(&self) -> Self {
        KeyedCount {
            back_end: self.back_end.clone()
        }
    }

}

///
///
/// Enumerated histograms.
///
/// Enumerated histogram generalize Count histograms to families of
/// keys known at compile-time. They are useful, for instance, to know
/// how often users have picked a specific choice from several, or how
/// many times each kind of error has been triggered, etc.
///
///
/// With `SerializationFormat::SimpleJson`, these histograms are
/// serialized as an object, one field per key (sorted), with value an
/// array of numbers, in the order of enum values.
///
pub struct KeyedEnum<K, T> where K: ToString, T: Flatten {
    witness: PhantomData<T>,
    back_end: BackEnd<Keyed<K>>,
}

// The storage, owned by the Telemetry Task.
struct KeyedEnumStorage {
    values: HashMap<String, Vec<u32>>,
}

impl KeyedRawStorage for KeyedEnumStorage {
    fn store(&mut self, key: String, value: u32) {
        match self.values.entry(key) {
            Occupied(mut e) => {
                let mut vec = e.get_mut();
                vec_resize(&mut vec, value as usize + 1, 0);
                vec[value as usize] += 1;
            }
            Vacant(e) => {
                let mut vec = Vec::new();
                vec_resize(&mut vec, value as usize + 1, 0);
                vec[value as usize] = 1;
                e.insert(vec);
            }
        }
    }
    fn to_json(&self, format: &SerializationFormat) -> Json {
        match format {
            &SerializationFormat::SimpleJson => {
                // Sort keys, for easier testing/comparison.
                let mut values : Vec<_> = self.values.iter().collect();
                values.sort();
                // Turn everything into an object.
                let mut tree = BTreeMap::new();
                for value in values {
                    let (name, array) = value;
                    let vec  = array.iter().map(|&x| Json::I64(x.clone() as i64)).collect();
                    tree.insert(name.clone(), Json::Array(vec));
                }
                Json::Object(tree)
            }
        }
    }
}

impl<K, T> KeyedHistogram<K, T> for KeyedEnum<K, T> where K: ToString, T: Flatten {
    ///
    /// Record a value.
    ///
    /// Actual recording takes place on the background thread.
    ///
    fn record_cb<F>(&self, cb: F) where F: FnOnce() -> Option<(K, T)>  {
        self.back_end.raw_record_cb(cb);
    }
}

impl<K, T> KeyedEnum<K, T> where K: ToString, T:Flatten {
    ///
    /// Create a new Enum histogram with a given name.
    ///
    /// Argument `name` is used as key when processing and exporting
    /// the data. Each `name` must be unique to the `Service`.
    ///
    /// # Panics
    ///
    /// If `name` is already used by another histogram in `service`.
    ///
    pub fn new(service: &Service, name: String) -> KeyedEnum<K, T> {
        let storage = Box::new(KeyedEnumStorage {
            values: HashMap::new(),
        });
        let key = PrivateAccess::register_keyed(service, name, storage);
        KeyedEnum {
            witness: PhantomData,
            back_end: BackEnd::new(service, key),
        }
    }
}

impl<K, T> Clone for KeyedEnum<K, T> where K: ToString, T: Flatten {
    fn clone(&self) -> Self {
        KeyedEnum {
            back_end: self.back_end.clone(),
            witness: PhantomData,
        }
    }

}